NovEMBER 2001

KYRIAKIDIS ET AL.

Terrain Characteristics

PHAEDON C. KYRIAKIDIS,* JINWON KM, AND NORMAN L. MILLER

Regional Climate Center, Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California

(Manuscript received 1 September 2000, in final form 4 April 2001)

ABSTRACT

A geostatistical framework for integrating lower-atmosphere state variables and terrain characteristics into the
spatial interpolation of rainfall is presented. Lower-atmosphere state variables considered are specific humidity
and wind, derived from an assimilated data product from the National Centers for Environmental Prediction and
the National Center for Atmospheric Research (NCEP-NCAR reanalysis). These variables, along with terrain
elevation and its gradient from a 1-km-resolution digital elevation model, are used for constructing additional
rainfall predictors, such as the amount of moisture subject to orographic lifting; these latter predictors quantify
the interaction of lower-atmosphere characteristics with local terrain. A “first-guess” field of precipitation
estimates is constructed via a multiple regression model using collocated rain gauge observations and rainfall
predictors. The final map of rainfall estimates is derived by adding to this initial field a field of spatially
interpolated residuals, which accounts for local deviations from the regression-based first-guess field. Several
forms of spatial interpolation (kriging), which differ in the degree of complexity of the first-guess field, are
considered for mapping the seasonal average of daily precipitation for the period from 1 November 1981 to 31
January 1982 over a region in northern California at 1-km resolution. The different interpolation schemes are
compared in terms of cross-validation statistics and the spatial characteristics of cross-validation errors. The
results indicate that integration of low-atmosphere and terrain information in a geostatistical framework could
lead to more accurate representations of the spatial distribution of rainfall than those found in traditional analyses
based only on rain gauge data. The magnitude of this latter improvement, however, would depend on the density
of the rain gauge stations, on the spatial variability of the precipitation field, and on the degree of correlation
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between rainfall and its predictors.

1. Introduction

Estimates of precipitation at regional scales are at the
heart of hydrological, ecological, and environmental
modeling in general, because they serve as input pa-
rameters (forcing fields) in spatially distributed models
(Entekhabi et al. 1999). At these scales, the utility of
precipitation predictions provided by general circulation
models is limited because of their coarse spatial reso-
Iution. The use of limited area models (LAMs) is grad-
ually emerging as a means for enhancing the accuracy
of rainfall predictions at regional scales (Giorgi and
Mearns 1991; Kim and Soong 1996; Miller and Kim
1996; Leung et al. 1996; Kim et al. 1998, 2000). Dy-
namic downscaling using LAMs yields multiple relevant
variables, including precipitation, that are physically
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and dynamically consistent. However, dynamic down-
scaling is computationally expensive and is not error-
free, because of limited spatial resolution and model
parameterizations. Statistical interpolation of rainfall
based on rain gauge data still provides one of the basic
analysis tools for constructing rainfall maps at regional
scales (Tabios and Salas 1985; Dirks et al. 1998), even
though physical and dynamic consistency of such in-
terpolation predictions is not preserved in general.

In the context of mapping precipitation using rain
gauge data, the variable most frequently used for en-
hancing interpolation, especially over mountainous re-
gions, is terrain elevation (Chua and Bras 1982; Hevesi
et al. 1992; Goovaerts 2000). Terrain-derived charac-
teristics, such as slope and aspect, as well as other var-
iables such as latitude, longitude, and distance from the
coast, are less frequently accounted for in the mapping
of rainfall (Spreen 1947; Burns 1953; Wolfson 1975;
Wotling et al. 2000). Hybrid approaches also exist that
account for slope orientation when selecting data to con-
struct local regression models between rainfall and el-
evation (Daly et al. 1994). Although the above variables
enhance the predictability of precipitation spatial dis-
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FiG. 1. Interaction of precipitation with elevation: (a) precipitation average (mm) during 1 Nov 1981-31 Jan 1982 at 77 rain gauges near
the northern California coastal region (crosses indicate gauges used for jackknife), (b) digital elevation model of 1-km resolution (elevation
values lower than O m are colored white, elevation values greater than 1000 m are colored black), (c) rank-order correlation coefficients
between 77 collocated precipitation and window-averaged elevation values as a function of aggregation scale, and (d) smoothed elevation
map derived via averaging the original elevation values of (b) within a 13 km X 13 km moving window.

tribution, they do not account directly for orographically
induced rainfall (Smith 1979).

Simple regional models with limited atmospheric
physics and dynamics [see Barros and Lettenmaier
(1993) for a review] focus on lower-atmosphere state
variables that steer storms and dictate the pattern and
movement of air masses (Rhea 1978; Alpert 1986; Is-
akson 1996). Examples of such variables include wind
speed and direction, as well as specific humidity inte-
grated over several pressure levels (Pandey et al. 1999).
Atmospheric variables typically are available at a very
coarse resolution. They only provide a picture of the
large-scale state of the atmosphere, which is expected
to bear some relevance to observed precipitation at the
local scale. The important link of such lower-atmo-
sphere characteristics with precipitation lies in their in-

teraction with local terrain (Alpert and Shafir 1989b;
Sinclair 1994; Andrieu et al. 1996).

To the authors’ knowledge, apart from some aspects
of the work of Herman et al. (1997), no comprehensive
method has been previously reported for incorporating
the joint effects of atmospheric and terrain variables to
the spatial prediction of rainfall using geostatistical
techniques. It should be stressed that such atmospheric
variables are widely available at coarse resolutions, and
their relevance to mapping precipitation at smaller
scales is significant, as will be illustrated in what fol-
lows. The geostatistical framework presented in this pa-
per accounts (in a quantitative way) for the joint effects
of atmospheric and terrain variables into the mapping
of rainfall at regional scales. This work is concerned
with time-averaged precipitation; the additienal factor
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TABLE 1. Summary statistics (mm) of the 77 sample precipitation
data.

Upper Lower
Mean Median Std dev  Min Max  quartile quartile
5.83 5.22 3.03 1.49 14.35 8.01 3.40

of temporal variability is not addressed. Enhanced map-
ping of precipitation in space and time using atmo-
spheric and terrain characteristics will be reported in the
near future.

The selection of rainfall predictors based on physical
considerations is demonstrated in section 2 for a study
region in northern California. In section 3, alternative
geostatistical approaches for mapping rainfall are pre-
sented. Two general cases are distinguished: spatial in-
terpolation using (a) only rain gauge precipitation data
and (b) rain gauge data in addition to low-atmosphere
variables and their interaction with terrain. In section
4, a case study is undertaken: seasonal precipitation for
the winter of 1981-82 is mapped for a region of northern
California, using the various algorithms presented in
section 3; the results are compared in terms of cross-
validation statistics. Last, in section 5, some conclusions
are drawn regarding the applicability of the proposed
methodology to rainfall mapping and the potential av-
enues for future research.

2. Study area, precipitation, and its predictors

The study domain (Fig. 1a) is a 300 X 360 km? area
of the northern California coastal region, which is char-
acterized by complex terrain and extreme seasonal var-
iation in precipitation. The characteristic length scale of
the terrain ranges from approximately 50—-100 km in the
northern part of the domain (the Coast Range north of
San Francisco Bay) down to 10-20 km in the south of
the bay. Annual precipitation varies widely within the
region from 200 mm yr~! in the Central Valley (east of
the Coast Range) to over 1300 mm yr~—' in the Santa
Cruz Mountains (north of the Monterey Bay). Western
slopes of the Coast Range receive 4-5 times more pre-
cipitation than the Central Valley during the cold season
(November—March). Precipitation in the region is gen-
erally from stratiform clouds caused by orographic lift-
ing of the westerly flow over the western slope of the
Coast Range. On occasion, strong convection embedded
within the stratiform clouds generates intense local pre-
cipitation.

The rainfall dataset used in this study consists of 77
rain gauge precipitation measurements representing the
seasonal [November—December—January (NDIJ)] aver-
age of daily rainfall for 1 November 1981-31 January
1982 at 77 stations over the study area (see Fig. la).
The crosses attached to certain rain gauges indicate that
these gauges are used subsequently in a jackknife pro-
cedure (see section 4). The statistics of the available
precipitation data are shown in Table 1. Precipitation
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TABLE 2. Matrix of Pearson correlation coefficient values between
sample precipitation and its predictors p,y,, k = 1, ..., 7 (top row)
and between any two pairs of predictors, p,y,.. k, &' =1,...,7. The
latter correlation values are computed over the entire study region
(not only from the 77 rain gauges). The original predictors are specific
humidity Y,, elevation Y,, and vertical wind Y;. The interactions are
humidity with elevation Y,, humidity with vertical wind Y, elevation
with vertical wind Y, and humidity with elevation and vertical wind
Y.

z ¥ Y, Y, Y, Y, Y, Y,
Z 100 054 035 005 069 030 019 045
Y, — 100 —-017 —0.02 068 068 —0.06 0.53
Y, — — 100 003 048 —025 057 03l
Y, — - — 1.00 003 062 0.76 0.6
Y, — - @ — — 100 043 038 075
Y, — - @ — — — 100 037 077
vy, — — @ — S — 1.00 076
Y, — - - e — — 100

values range from 1.49 to 14.35 mm with a mean of
5.83 mm and a standard deviation of 3.03 mm. The
difference between the median (5.22 mm) and the mean
(5.83 mm) values indicates a slightly positively skewed
precipitation histogram. The original daily precipitation
values constitute a subset of the Cooperative Observer
and first-order precipitation stations, obtained from the
National Oceanic and Atmospheric Administration; for
details see Pandey et al. (1999).

The objective of this study is to map the season-
average precipitation on a 300 X 360 grid of cell size
1 km?, using all relevant information available for this
region. The decision to map the particular NDJ average
of precipitation, instead of an interannual mean, was
dictated by the fact that such a map should be used as
input to coupled hydrologic models calibrated for that
particular time period. Mapping the interannual rainfall
average might reveal different structures of dependence
between precipitation and its predictors; such an alter-
native scenario was not investigated in this work.

a. Elevation as a precipitation predictor

The spatial distribution of precipitation is heavily in-
fluenced by temperature, especially by its vertical lapse
rate, which dictates the local level (height) and rate of
condensation. In the absence of detailed (small-scale)
temperature information, we use elevation as its sur-
rogate, at least as a first approximation; this would be
true for the case of a spatially constant lapse rate. Be-
cause we are interested in the spatial patterns of tem-
perature rather than in its absolute magnitude (see be-
low), this first approximation is adequate for all practical
purposes. One alternatively could establish a regression
function between coarse-resolution (large scale) tem-
perature and fine-resolution (small scale) elevation in-
formation. The fine-resolution terrain then could be
transformed into a regression-based temperature map,
which would exhibit small-scale variations due to cor-
responding local terrain variations.
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FiG. 2. Time-average (from 1 Nov 1981 to 31 Jan 1982) of daily lower-atmosphere state variables from NCEP-NCAR reanalysis nodes:
(a) specific humidity (g Kg~') integrated from 850- to 1000-hPa levels, (b) wind speed (m s~') at the 700-hPa level, and (c) wind direction

(in degrees clockwise from north) at the 700-hPa level.

A 1-km-resolution digital elevation model (DEM) is
available for this area and is shown in Fig. 1b; elevation
values range from —17 to 1668 m, with a median of
126 m and an interquartile range of 398 m. The DEM
grid size is 300 X 360 km? and coincides with the grid
at which estimation—interpolation of rainfall will be per-
formed. All subsequently derived rainfall predictors are
available at this spatial resolution. The first step, then,
is to determine precipitation values at the 77 grid nodes
that are closest to the 77 rain gauges using the nearest-
neighbor method. The rank order (Spearman) correla-
tion coefficient between collocated precipitation and el-
evation values is 0.22 (here the term collocated connotes
that the pairs of rainfall and elevation data used to com-
pute that correlation are located on the same grid node,
possibly after nearest-neighbor interpolation of the rain

gauge value). This valve implies that, for the particular
area and season, elevation is weakly correlated with
precipitation, which is expected for relatively low
mountains such as those found in the study region. We
use the Spearman correlation coefficient instead of the
ordinary Pearson correlation coefficient because the for-
mer is more robust to outliers. In addition, we interpret
the relevance of elevation with precipitation in terms of
its correlation with the relative rank of precipitation and
less in terms of its correlation with precipitation mag-
nitude. The nonlinear rank-order transformation in-
volved in calculating the Spearman correlation coeffi-
cient allows capturing nonlinearities in the elevation—
precipitation relationship.

To determine the scale of interaction between pre-
cipitation and elevation, the DEM-reported value at each
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1-km cell was replaced by the elevation average over
gradually enlarged square windows ranging from 3 X
3 km? to 21 X 21 km?, with an increment of 2 km in
each direction. Ten different averaging windows were
applied to obtain 10 sets of averaged elevation values
derived at the 77 rain gauges. Rank correlation coeffi-
cients were then calculated between the 10 sets of col-
located precipitation and average elevation values cor-
responding to each window size. As indicated by the
scatterplot of Fig. 1c, correlation increases gradually as
the size of the averaging window increases, and a max-
imum of 0.36 is reached for a 13 X 13-km? window;
for larger window sizes, correlation drops gradually.
Window averaging is similar to low-pass filtering with
a boxcar window, which smooths elevation spatial var-
iability below a given window size. For the particular
region shown in Fig. la, elevation exhibits the maxi-
mum relevance to precipitation, that is, can better inform
its mapping, when small-scale (<13 km) elevation fea-
tures are suppressed. Henceforth, the term elevation is
used for this 13 X 13 km? window averaged elevation,
whose map is shown in Fig. 1d.

b. Atmospheric variables as precipitation predictors

Lower-atmosphere state variables at the study region
for the winter of 1981/82 include specific humidity, in-
tegrated from 850- to 1000-hPa levels, and the hori-
zontal wind components at the 700-hPa level. More spe-
cific, the time averages of specific humidity and hori-
zontal wind components over the period of interest were
retained. Lower-atmosphere state variables are available
at a coarse resolution of 2.5° X 2.5° from the National
Centers for Environmental Prediction—National Center
for Atmospheric Research (NCEP-NCAR) reanalysis
dataset (Kalnay et al. 1996). The reanalysis products
provide snapshots of the global atmospheric and surface
fields at a uniform resolution every 6 h. NCEP-NCAR
reanalysis variables are generated via data assimilation,
whereby observational data around the globe are used
to drive a global atmospheric model. Details of the data
quality control and assimilation procedure are presented
in Kalnay et al. (1996). Together with the reanalysis
from the European Centre for Medium-range Weather
Forecasts, NCEP-NCAR reanalysis variables are re-
garded as the most reliable (and widely available) rep-
resentation of the instantaneous state of the global at-
mosphere.

We retained reported values at nine reanalysis nodes
within and nearby the study region, which are shown
in Fig. 2. Season-averaged specific humidity ranges
from 14.81 to 16.68 g kg~! and is relatively smaller in
the southeastern part of the study domain (Fig. 2a).
Wind speed ranges from 7.02 to 10.90 m s~' and is
relatively higher at the northwestern part of the region
(Fig. 2b). Last, wind direction ranges from 86.58° to
110.61° from the north (Fig. 2c), indicating a dominant
wind direction from the west. Lower-atmosphere state
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variables, although known at a very small number of
locations, provide a picture of the large-scale state of
the lower atmosphere, which is expected to be related
to observed precipitation at the local (1 km) scale.

We use interpolated horizontal wind components (not
shown) to calculate the vertical component of wind w,
due to orographic lifting at the local scale. This terrain-
induced vertical motion is defined as the inner product
of directional elevation gradients with the corresponding
horizontal wind components, (e.g., Alpert 1986):

dh dh
= —v-Vh=—ul—]|+ v|—||
w, v M(dx) v(dy) H
where v = (u, v) denotes the wind vector with local

horizontal components u and v, and dh/dx, dh/dy denote
the local gradients of elevation along the same direc-
tions.

Although the horizontal wind vector v is available at
a very coarse resolution from the nine NCEP nodes and
interpolation at a 1-km resolution provides very smooth
maps of the horizontal wind components over the study
region, the vertical wind component due to orographic
lifting exhibits small-scale variations due to local ter-
rain. In this paper, such terrain-induced vertical motion,
which can also be regarded as the exposure of local
terrain to local wind, is accounted for in the regional-
scale mapping of rainfall.

Rainfall predictors are subsequently derived from the
NCEP-NCAR reanalysis lower-atmosphere state vari-
ables and their interaction with local terrain in the fol-
lowing three steps.

1) Interpolation (via the inverse-distance-squared meth-
od) of specific humidity and horizontal wind com-
ponents from the nine NCEP nodes to a 300 X 360
grid with 1-km? cell size is done. Inverse-distance
interpolation is retained in lieu of other methods of
objective analysis because of the very small number
of NCEP nodes, which does not allow for reliable
inference of structural characteristics, for example,
a spatial correlation model for specific humidity. The
vertical wind component at any grid cell is calculated
using Eq. (1). Let x, (u), x,(w) denote the interpolated
values of specific humidity and derived vertical wind
component at any grid cell with (2D) coordinate vec-
tor u = (u,, u,), expressed, for example, in degrees
of longitude and degrees of latitude, respectively. Let
x,(u) denote the elevation at u obtained from the
low-pass filtering procedure described in section 2a.

2) The resulting values are transformed to follow a uni-
form distribution. For the case of specific humidity,
for example, the transformed value y,(u) at any lo-
cation u is computed as

yi(w) = Fy [x, w)], e[0, 1], (2)

where Fy () denotes the cumulative histogram of the
interpolated specific humidity values. For the case
of vertical wind component X, a zero value corre-
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F1G. 3. Maps of ranked predictors for precipitation: (a) specific humidity integrated from 850 to 1000 hPa, (b) average elevation within a
13-km square window, and (c) vertical wind component.

sponds to the median of the distribution; that is,
Fy(0.0) = 0.5, which implies that a rank-ordered
value y,(u) of greater than 0.5 should be interpreted
as uplift. In the more general case, one would first
compute the probability corresponding to a zero val-
ue of the vertical wind component p{® = F, (0.0)
and then interpret as uplift all rank-ordered values
greater than p{. Rank-ordered values lower than
p® conversely would correspond to downslope ver-
tical wind movement.

3) The interaction terms among the three predictors

y,(w), y,(u), and y;(u) are calculated. For example,
the interaction between humidity and the vertical
wind component at a grid cell u is calculated as y(u)
=y, (u)y,(a). This product term is the rank-ordered
amount of moisture uplift due to wind encountering
the local terrain slope. The interaction term y,(u) =
y;(@y,(@)y;(uw) is the (rank ordered) moisture uplift
due to wind encountering the local terrain slope,
modulated by the decrease of moisture availability
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TABLE 3. Model parameters adopted (via cross validation) for the
variograms of the sample precipitation data, and the residuals from
the different trend functions. The variogram model specification is
y@ (lhl) = COQ) — ¢ exp[hl/ai®] — ¢ exp[ihl/a{], where |hi de-
notes the modulus of a distance vector h, and C(0) denotes the var-
iance of the ith dataset. Parameters ¢{? and a{ denote the respective
sill (mm?; contribution to the total variance of the ith dataset) and
range (km) of the small-scale variogram structure; ¢{ and af denote
the respective sill and range of the large-scale variogram structure.

Dataset ¢ c, a, a,
Original z values 2.00 7.16 40 160
Residuals REGR-2 0.57 7.50 40 150
Residuals REGR-4 1.00 3.80 30 120
Residuals REGR-347 1.00 3.35 25 90

with topographic height. The remaining interaction
terms were calculated as y,(u) = y,(w)y,(u) and
ve(u) = y,(wy,;(w). All the resulting interaction
fields are also transformed to follow a uniform dis-
tribution as in Eq. (2).

The transformation procedure of Eq. (2) is applied
for eliminating the effect of different histograms of pre-
dictor fields to precipitation mapping, given that all
transformed fields lie in the interval [0, 1]. One should
interpret the relevance of a predictor value at any grid
cell in terms of its relation with the relative rank of
precipitation rather than in terms of its correlation with
precipitation magnitude. The magnitude of precipitation
is dictated by the rain gauge observations themselves.

Maps of the final rank-transformed values of specific
humidity y, (a), elevation y,(u), and vertical wind com-
ponent y,(u) at any 1-km? grid cell u are shown in Fig.
3. Note the extremely smooth spatial variation of hu-
midity (Fig. 3a), as opposed to that of elevation (Fig.
3b) and vertical wind component (Fig. 3c). The patterns
of spatial variability of the latter are mainly due to the
elevation gradient fields, because the interpolated hor-
izontal wind components (not shown) exhibit very
smooth spatial variation attributable to the limited spa-
tial resolution of NCEP-NCAR reanalysis. The vertical
wind component field (Fig. 3c) exhibits the most com-
plex spatial variability. Relatively large positive values
of vertical wind, dark pixels corresponding to stronger
uplift, are found on the windward side of the terrain
(recall that the prevailing wind direction is from the
west).

Maps of the final rank-transformed values of the in-
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teractions between humidity and elevation y,(u), hu-
midity and vertical wind y;(u), elevation and vertical
wind y¢(u), and humidity with elevation and vertical
wind y,(u) are shown in Fig. 4. One can appreciate the
smooth spatial patterns inherited from humidity and to
a lesser extent from elevation (Fig. 4a) and the complex
spatial patterns inherited from the vertical wind com-
ponent (Figs. 4b—d).

Last, we investigate whether the predictor values at
the rain gauge stations are a representative sample of
their respective populations. This is done by construct-
ing quantile—quantile plots between the distributions of
all predictors (over the entire domain) and their re-
spective sample distributions (Fig. 5). A representative
sample for, say, elevation would lead to a corresponding
quantile—quantile plot aligned with the 45° line. Rain
gauges tend to be located in relatively low elevations,
although very low and very high elevations are ade-
quately covered (Fig. 5a). Specific humidity and vertical
wind, on the other hand, are adequately sampled from
the spatial configuration of the available rain gauges
(Figs. S5b—c). Similar graphs were constructed for the
remaining predictors (not shown), and indicated rep-
resentative samples for these predictors.

c¢. Correlation between precipitation and its
predictors

In this paper, the relevance of the three predictors and
their interactions to observed precipitation is quantified
in terms of their correlation with the rain gauge data
(Table 2, top row). Maximum correlation between a pre-
dictor and precipitation is reached for the interaction of
humidity with elevation (p,,, = 0.69), followed by hu-
midity alone (p,, = 0.54) and by the interaction of
humidity with elevation and vertical wind component
(pzr, = 0.45). Elevation alone is not strongly correlated
with precipitation (p,,, = 0.35), and the same holds true
for the interaction of humidity with vertical wind
(pzy, = 0.30). The vertical wind component and its in-
teraction with elevation are almost uncorrelated with
precipitation (p,,, = 0.05 and p,,, = 0.19, respectively).
These low correlation-coefficient values might be the
result of the small time averaging period (NDJ), which
cannot reveal a definite correlation between vertical
wind component and observed precipitation. Such a re-
lationship could be more evident if observed precipi-

TABLE 4. Statistics of cross-validation errors for different mapping algorithms (subscripts denote the predictors used in the respective
regression equations). Rmse denotes the root-mean-square error (mm), p(Z¥, Z) denotes the correlation between the cross-validation estimates
z%(un,) and the sample precipitation data z(u,), and p(E%, Z) denotes the correlation between the cross-validation errors e (u,) and the true
values z(u,). The numbers in parentheses show the relative changes in the corresponding cross-validation statistics from OK (values in the

first column).

Statistics OK SKLM, KED, SKLM, KED, SKLM,,, KED.,,
Rmse 1.67 1.59 1.58 1.66 1.64 1.56 (—7%) 1.52 (—9%)
Prz 0.83 0.86 0.85 0.84 0.84 0.86 (+4%) 0.87 (+5%)
P —0.54 —-0.47 —0.44 —0.44 —0.48 —~0.37 (—31%) —0.46 (—15%)
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FIG. 4. Maps of ranked interactions between precipitation predictors: (a) humidity with elevation; (b) humidity with vertical wind
component, (c) elevation with vertical wind, and (d) humidity with elevation and vertical wind.

tation within different storm types (e.g., frontal vs syn-
optic) was compared with the vertical wind component
occurring during the same storm type.

From Table 2, one can appreciate the importance of
humidity in mapping precipitation, given that its (Pear-
son) correlation with the rain gauge data is p,,, = 0.54.
However, the spatial variation of humidity is very
smooth and cannot distinguish local precipitation fea-
tures. It is here where the role of the interaction between
lower-atmosphere state variables and terrain character-
istics becomes important. Indeed, the interaction of hu-
midity with elevation is strongly correlated with pre-

cipitation (p,,, = 0.69), and the interaction of humidity
with elevation and vertical wind is moderately corre-
lated with precipitation (p,, = 0.45). Both of these
predictor fields exhibit nonsmooth patterns of spatial
variability and potentially can resolve local precipitation
features.

Next, we investigate whether a significant correlation
exists between the predictor variables themselves, a sit-
uvation termed mutlicollinearity in a regression context
(Draper and Smith 1998). The original predictors (i.e.,
specific humidity Y,, elevation Y,, and the vertical wind
component Y;) constitute nearly independent variables,
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because the correlation between them is very low:
py Y, = —0.17, p, ¥, = —0.02, and p,,Y; = 0.03 (see
Table 2). The interaction variables (i.e., that of specific
humidity with elevation Y,, specific humidity with ver-
tical wind Y, elevation with vertical wind Y, and spe-
cific humidity with elevation and vertical wind Y,) are
not independent, as indicated by the nonnegligible cor-
relation coefficients between them (Table 2). In a mul-
tiple regression model, interpretation of the resulting
regression coefficients is straightforward only in the
case of independent predictors. When predictors are cor-
related, as are the derived precipitation predictors (in-
teractions) in this dataset, the resulting regression co-

efficients should be interpreted in the light of multi-
collinearity.

3. Mapping precipitation via geostatistics

Consider the task of predicting the unknown precip-
itation value z(u) at any location u within the study
area, that is, the task of constructing a map of precip-
itation estimates. Atmospheric and terrain variables, as
well as their multiplicative effects (their interactions),
constitute valuable information for improving precipi-
tation predictability, in addition to the n available rain
gauge measurements {z(u,), ¢« = 1, ..., n} (here u,
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denotes the coordinate vector of the ath rain gauge).
The objective is (a) to assess the relevance of each pre-
dictor to observed precipitation and (b) to account for
the most relevant predictors in the spatial interpolation
of rainfall.

For simplicity, we assume that u represents the co-
ordinate vector of the central point of any grid cell and
that rain gauge data or relevant atmospheric variables
(derived or interpolated) are defined on the same quasi-
point support. In our case study (see section 4), an un-
known precipitation value z(u) or a known elevation
value y,(u) is regarded as representative of a 1-km? grid
cell centered at u.

In geostatistics, a precipitation value z(u) at a location
u within the study area (whether a rain gauge or not)
is regarded as an outcome of a random variable (RV)
Z(u) at that location. The set of all possible spatially
dependent RVs in the study area constitutes a random
function or random field (RF) denoted as {Z(u), u.e
D} (Journel and Huijbregts 1978; Goovaerts 1997, Chil-
¢s and Delfiner 1999). The RF {Z(u), u € D} is typically
decomposed as

Z(w) = m(u) + R(u), ue D, 3
where m(u) is a deterministic trend component modeling
an ‘“‘average” spatial variation of Z(u) and R(u) is a
stochastic residual RF with zero mean E[R(u)] = 0, Vu
and covariance Cr(u, u') = E[R(u)R(u’)]. The expected
value of Z(u) at any location is therefore the trend value
m(u) at that location; that is, E{Z(u)] = m(u), u € D.

The decomposition of Eq. (3) is entirely subjective,
because no data exist on either m(u) or R(u) (Thiébaux
1997). In all rigor, Eq. (3) should be rewritten as

Z(u) = my,(w) + Ry, (w), uwe D, “4)

to emphasize the dependence of the trend and residual
components to the particular algorithm (alg) used to
define them.

On one hand, the trend component m,,(u) could be
identified to predictions of a physically based deter-
ministic model, and the resulting residual R,,,(u) could
be viewed as stochastic spatial variability (Rutherford
1972). On the other hand, a constant trend component
my(a) = m attributes all spatial variability to the re-
sidual component R, (w), which implies that no prior
knowledge exists regarding the average spatial vari-
ability of the phenomenon under study. In the optimal
case, the trend component should be associated with
some physically meaningful component of spatial var-
iability. The residual component should model stochas-
tic variations (not necessarily purely random, i.e., white
noise) around that trend. In what follows, the subscript
alg is dropped for simplicity.

If the spatial variation of precipitation is considered
to be stationary, the expected value of any RV Z(u) is
equal to a constant m, independent of the coordinate
vector u:
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m = m() = E[Z()] = ! E z(u,),

a=1

Y ue D,

and the residual covariance function C(u, u’) between
any two residual values r(u) and r(u') = r(u + h) de-
pends only on the magnitude (and possibly the orien-
tation) of the vector h separating them:

Cr(u, u') = Cp(h) = E[R@R(u + h)]

n(h)

:m:x=l

where n(h) denotes the number of residual pairs {r(u,),
r(u, + h)} separated by vector h. The covariance C,(h)
of the residual r values for the stationary case is equal
to that of the original precipitation z values; that is,
Cr(h) = C(h).

Before presenting rainfall mapping schemes that ac-
count for several auxiliary variables, such as humidity,
elevation, and their interactions, we first present the case
of mapping rainfall using only rain gauge measure-
ments.

r(u,)r(a, + h),

a. Spatial interpolation using only rain gauge data

Consider the task of estimating the unknown precip-
itation value z(u) at a location u from n(u) < n sur-
rounding values {z(u_ ), ¢« = 1, ..., n(u)} within a
neighborhood W(u) centered at u. In the stationary case,
n(u) + 1 pieces of information are available: the known
regional mean m, and the n(u) residual values {r(u,)
= [z(u,) —m],a=1,..., n(w}.

The simple kriging (SK) estimate z% (u) for the un-
known value z(u) is expressed as

n(u)
Zh() = m@) + @) =m + X A @r,), (5)
a=1
where r# (u) denotes the SK estimate (with known zero
mean) of the unknown residual r(u) and A, (u) denotes
the weight assigned to the ath residual value r(u,) when
estimation is performed at location u.

The n(u) weights {A,(n), « = 1, ..., n(u)} are ob-
tained per solution of the system of normal equations
or SK system:

nu)

BZ AW)Cr(u, — u,) = Cypu, — w),

a=1,...,nMw), (©6)

where Cr(u, — u,) is the covariance between any two
data locations u, and u,, and Cy(u, — w) is the co-
variance between any datum location u, and the location
u where estimation is performed. Note that the weights
do not depend on the residual values, only on their
configuration through the covariance model Cg(h). In
meteorology, simple kriging is termed objective analysis
(Daley 1991), and in the statistical literature it is termed
best linear unbiased predictor (Cressie 1993).
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In reality, the regional mean m of precipitation is
unknown; it could be estimated by a weighted average
of the sample rainfall data using various weighting
schemes. In practice, however, the average precipitation
spatial variability is nonstationary; that is, it varies sys-
tematically from one location to another. Local varia-
tions of the trend component m can be accounted for
by considering a mean m(u), which is constant within
each neighborhood W(u) but varies from one neigh-
borhood to another:

mu') = ¢, vVu' € W),
# ¢ = m@"), Ya” € W").

Estimation of the unknown value z(u) now proceeds
by first estimating the local mean m(u) within the neigh-
borhood W(u), using data only from that neighborhood,

n(u)
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and then performing SK using the resulting residuals.
The algorithm is known as ordinary kriging (OK) with
moving neighborhoods (or moving windows).

Within any neighborhood W(u), the OK estimate
z&(w) is written as

75c(@) = mfe(a) + ree(a)

n(u) n(u)
= 2 nWz) + X A r' @), ()
a=1 a=
where r'(u,) denotes a new residual value defined as:
rl(uu = Z(ua) - n)lé:K(ua)'

The n(u) weights {v,(u), « = 1, ..., n(u)}, which
are different from the SK weights {A (W), « = 1, ...,
n(u)}, hence the different notation, are obtained per so-
lution of the OK system:

> v@Ce(u, — ) + po@ =0,  a=1,...,n@

B=1

n(u)

®

> v) =1,

B=1

where Cp(u, — u,) denotes the covariance between
any two residual values r'(u,) and r'(ug), and pqx (u)
is a Lagrange parameter due to the constraint on the
weights imposed for estimating the local mean m,.(u).
In this local stationary case, the typical practice consists
of assimilating the covariance Cy (h) of the residuals to
the covariance C,(h) (Goovaerts 1997). This is the rea-
son for using the same notation for the SK weights A, (u)
in both Egs. (5) and (7).

Kriging (either SK or OK) is an exact interpolator;
that is, kriging estimates reproduce observed sample
data values at their locations: z¥% (u,) = z(u,) for any
sampling location u,. This data-exactitude property of
kriging is not shared by the traditional ordinary least
squares (OLS) regression models. In the case of rain
gauge data contaminated by measurement errors with
known statistics (mean, variance, and covariance), in-
terpolation should not reproduce the sample data values
at their locations; this situation is not treated in this
work. Measurement errors, however, could be filtered
out in the interpolation procedure via factorial kriging
(Wackernagel 1995; Goovaerts 1997).

We now present two geostatistical alternatives for in-
corporating several relevant predictors into the mapping
of rainfall. In what follows, we do not adopt the geos-
tatistical approach of cokriging (Hevesi et al. 1992),
because of space limitations and for the following two
reasons: (a) the inference effort required by cokriging
increases with the number of predictors and (b) various
investigators have reported that cokriging does not im-

prove significantly the accuracy of precipitation esti-
mates when compared (in terms of cross-validation sta-
tistics) with the two approaches presented in the next
section (Goovaerts 2000).

b. Spatial interpolation accounting for rainfall
predictors

A straightforward approach for incorporating the most
relevant precipitation predictors into the spatial inter-
polation of rainfall is multiple regression. Let Y =
(), a=1,...,nk=0,..., K] denote an [n X
(K + 1)] matrix containing the values of the predictors
at the n grid cells nearest to the n rain gauges. The kth
column of Y is the vectory, = [y, (u,), « =1, ..., n]
with entries being the n values of the kth predictor y,,
with, by convention, y,(u,) = 1. The (K + 1) vector b
= (by, ..., by)' of linear regression coefficients asso-
ciated with the available predictors is derived as (Draper
and Smith 1998):

b = (YY) 'Yz, ®

where z = [z(u,), @ = 1, ..., n]’ denotes the vector
of n sample precipitation values recorded at the n rain
gauges.

An estimate z(u) for the unknown precipitation value
z(u) at any location u is constructed as

Zf(w) = fly(w)] = y(wb, (10)

where f() denotes a regression function, and y(u) =

ue D,
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FiG. 6. Maps of regression-based precipitation estimates (mm) derived using (a) elevation Y, as a single predictor (REGR-2); (b) the
interaction of specific humidity and elevation Y, as a single predictor (REGR-4); and (c) the vertical wind component Y;, the interaction of
specific humidity with elevation Y,, and the interaction of specific humidity with elevation and vertical wind Y, as predictors (REGR-347).

[yo(m), ..., yg(w)] denotes the (K + 1) vector of pre-
dictor variables available at each map location u, with,
by convention, y,(u) = 1.

The coefficient vector b is constant over the study
region, because the regression function is determined us-
ing all n data values; this implies that the function f()
does not account for local variations in the relationship
between precipitation and its predictors. Any difference
(spatial variation) between two estimates z} (u) and z¥(u’)
at two locations u and u’ stems solely from the difference
of the corresponding predictor vectors y(u) and y(u') at
these locations. The estimate z#(u) accounts for the rel-
evance of the collocated predictor vector y(u) to the un-

known precipitation value z(u); it does not explicitly ac-
count, however, for any nearby sample precipation data
z(u,) or for any predictor vector y(u') at a nearby location
u'.

A regression-derived precipitation estimate z}f(u,)
at a rain gauge location u, typically differs from the
sample precipitation value z(u,) at that location by a
residual amount that varies from one rain gauge to
another. If the method of OLS is used to establish the
coefficient vector b, the n residual values {r(u,) =
z(u,) — zf(u,)], @ =1,...,n} are assumed to have
a Gaussian distribution and a purely random (white
noise) spatial variation. This latter assumption of spa-
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tial independence reduces the applicability of hy-
pothesis-testing procedures in a spatial setting, given
that the residuals are usually correlated in space (see
section 4).

Recall that, through the subjective decomposition
of the RF model in Eq. (4), the observed value z(u,)
at any rain gauge location u, can be viewed as the
sum of a local trend component m,,(u,) and a local
residual component r,,(u,). One could choose to
identify the local trend component m,,(a,) to the re-
gression-based precipitation estimate z¥(u,) at that
location; that is,

Z(um) = lnalg(uoz) + ralg(ua) = Z?'C(ua) + rf(ua)’

ue D,

(1L

where r,(u,) denotes the residual from the particular
trend model zf(u,).

Note that the decision to adopt a linear versus a non-
linear regression model for establishing the local trend
component m,,(u,) is one possible (subjective) inter-
pretation of the decomposition in Eq. (4). The use of
forward stepwise regression instead of backward elim-
ination for selecting the pool of most relevant predictors
(Draper and Smith 1998) is similarly another possible
(subjective) interpretation of the general decomposition
in Eq. (4). Different decisions evidently result into dif-
ferent sets of predictor variables, which in turn result
into a different trend component n,,(u) and conse-
quently a different residual component r,, (u) at each
location u. In any case, the residual component r,,(u)
is considered to be stationary with zero mean, and SK
consequently can be used for mapping the residual spa-
tial variation.

In the case of a spatially varying trend component
zf(a), SK provides an estimate r#/(u) for the unknown
residual r,(u) based on the n(u) residual values within
a neighborhood W(u) centered at w. The information
utilized by SK comprises the n(u) residual values
{r,(uy) = [z(u,) — z¥( )], @ = 1, ..., n(u)} within
W(u), as well as their spatial covariance C, f(h). This
estimated residual rg/(u) is then added back to the re-

n(u)

nn)

where Cp (u, — ug) denotes the covariance between
any two residual values 7, (u,) and r,(u,), with r,.(a,)
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gression-derived estimates zf(w), and the combined pro-
cedure is termed detrended kriging (Switzer 1979; Chua
and Bras 1982) or SK with varying local mean (SKLM;
Goovaerts 1997). The corresponding SKLLM estimate
zEam(@) is written as

Zam(@) = mf@@) + rH(w)

n(u)
=@ + D Er@,),  (12)
a=]
where the weights &,(u) are determined per solution of
a SK system similar to that of Eq. (6):

n(u)
géwgm;ma=%mfwx

a=1,...,n(@), 13)

the only difference being that instead of the covariance
Cr(h) used in Eq. (6), the covariance C, f(h) of the new
residual component R,(u) is used here. This is also the
reason for the different notation £,(u) adopted to denote
the corresponding weights, instead of A, (u) or v (u).

Local variations in the relation between precipitation
and its predictors can be accounted for a posteriori, that
is, by locally deforming the regression-based trend com-
ponent m¥(u) = zF(u). A new trend component m*(u)
can be defined as a local linear rescaling of the regres-
sion-based z}(u) estimate, so that the latter conforms
locally [within each neighborhood W(u)] to the n(u)
nearby sample precipitation data {z(u,), o =1, ...,
n(u)}. The locally modified trend component mi.,(u)
is provided via kriging with an external drift (KED) [for
example, Wackernagel (1995)]:

nu)

Mk (W) = do(u) + d,(W)zF W) = 2, 6, (Wz(w,), (14)

where d,(u) and d,(u) denote local regression coeffi-
cients, which are constant within each neighborhood
W(ua) and are different from one neighborhood to an-
other.

The n(u) weights {0, (u), « = 1, ..., n(u)} are ob-
tained per solution of the KED system:

1, ..., n()

n(u)

> ) =1
p=1

s)

>, O(wm (u,) = m¥(w),
B=1

= z(w,) — mp(u,); uf(u) and ukEP(u) are two La-
grange parameters due to the two constraints on the
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weights. As a first approximation, the residual covari-
ance Cg,(h) could be identified to the covariance Cp (h)
of the residual values obtained from the (global) re-
gression. The corresponding KED estimate z§;,(u) for
the unknown value z(u) is:

ZEep(@) = mifp (@) + g (w)

n(w)

= mip(u) + }; Era(u,),  (16)

which, as in the previous section, amounts to adding to
the KED-derived trend component m,(u) an SK es-
timate &/’ (a) of the corresponding unknown residual
r(u). Because Cp (h) = Cp (h), the same notation & (u)
is used for the SK weights in SKI.M [Eq. (12)] and
KED [Eq. (16)].

An alternative (and more elaborate) procedure could
be envisaged, whereby the local trend of precipitation
is evaluated with respect to each predictor individually
instead of collectively through their linear combination
obtained by regression. For the case of KED, this ap-
proach would call for the determination of two coeffi-
cients for each variable, leading to a total of 2(K + 1)
trend coefficients for the case of (K + 1) variables. In
this paper, we do not pursue this alternative; we essen-
tially regard the regression-based precipitation predic-
tions as a secondary variable carrying all the available
information content of the individual predictors.

The different geostatistical algorithms presented in
this section for mapping precipitation are a consequence
of the different decompositions of the RF model {Z(u),
u € D} given in Eq. (3). To be more specific, their
difference lies in the complexity of the spatial trend
component m(u) within each neighborhood W(u) cen-
tered at the location u where estimation is performed
and the complexity of the resulting residual component.
For SK, the spatial trend component m(u) is assumed
to be constant; that is, m(u) = m, Yu € D. This as-
sumption is oversimplified, and SK is not considered in
what follows. For OK, m(u) is estimated using only
nearby precipitation data based on a model of their spa-
tial correlation; that is, m(u) = m¥, (a). For SKLM, m(u)
is identified to the precipitation estimates based on the
regression between lower-atmosphere state variables
(including their interactions with local terrain) and ob-
served precipitation; that is, m(u) = z¥(u). Last, for
KED, m(u) is identified to local deformations of zf(w);
that is, m(u) = mp(n).

Recall that the resulting residual component R(u) is
considered to have a constant (zero) mean and a sta-

tionary covariance model Cr(h) in all forms of kriging

presented in this section. As a consequence, it is ex-
pected that the introduction of more realism in the spa-
tial trend component, via consideration of relevant pre-
dictor variables, will render the assumption of a sta-
tionary residual less unrealistic. This implies that SKLM
and KED, whose spatial trend components are the most
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complex, will lead to more realistic (physically less in-
consistent) rainfall maps.

Both SKLLM and KED can be viewed as corrections
to the “first-guess” field derived via an OLS regression.
Recall that OLS assumes that the regression residuals
are spatially uncorrelated; hence SKI.M and KED can
be regarded as procedures for reintroducing such a re-
sidual spatial correlation to the mapping of precipitation.
Both SKLLM and KED corrections ensure data exactitude
and could be viewed as (intermittent) data assimilation
techniques (Rutherford 1972). The only difference is
that in the meteorological definition of data assimilation,
the first-guess field is a physically based prediction from
a dynamic atmospheric model. In our case, the first-
guess field is a statistical prediction based on relevant
(in a physical sense) variables with observed precipi-
tation. By construction, the regression-based estimates
are independent of the resulting residuals, whereas this
might not be true in the case of data assimilation in-
volving the difference between atmospheric model pre-
dictions and observed precipitation.

The alternative geostatistical algorithms (apart from SK)
presented in this section are subsequently applied for map-
ping rainfall over the study area shown in Fig. la.

4. Case study

The precipitation dataset shown in Fig. 1a, as well as
the predictors derived in section 2 and shown in Figs.
3 and 4, are used for mapping rainfall over a 300 X
360 grid of cell size 1 km?. In what follows, we first
present maps of rainfall estimates derived from the dif-
ferent algorithms presented in section 3. These estimates
then are compared in terms of their cross-validation sta-
tistics in section 4b. All geostatistical analyses were
performed using the public-domain “GSLIB” geosta-
tistical software library package (Deutsch and Journel
1998).

a. Regression models between precipitation and its
predictors

In this work, we investigate three possible subsets of
predictors from the full set shown in Table 2, that is,
three different matrices Y, in Eq. (9), to arrive at three
different regression coefficient vectors b,, each specific
to the ith predictor subset. For the first regression model,
we follow the traditional avenue and use elevation as
the single precipitation predictor; that is Y, = [1y,],
where 1 denotes the n X 1 unit vector and y, denotes
the n X 1 vector of elevation values at the pixels closest
to the n = 77 rain gauge locations. The resulting re-
gression equation is

Z(u) = 37515 + 4.5864y,(n), (17)

where the subscript 2 implies that only elevation y,(u)
is used as precipitation predictor. For this regression
model, variance R? = (.12, indicating that only 12% of
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F16. 7. Characteristics of estimated and residual precipitation values (mm) resulting from regression using the vertical wind component
Y;, the interaction of specific humidity with elevation ¥,, and the interaction of specific humidity with elevation and vertical wind Y, as
predictors (REGR-347): (a) scatterplot of estimated versus sample precipitation values, (b) location map of precipitation residuals, and (c)
normal probability plot of the distribution of precipitation residuals, indicating a quasi-Gaussian distribution.

the precipitation spatial variability is “explained” by
elevation; the rmse is 2.88 mm.

The map of precipitation estimates z¥(u) derived via
Eq. (17) is shown in Fig. 6a. Note the smooth spatial
characteristics of this regression-based field, which does
not account for either orographic lifting or for humidity.
The terrain pattern is imprinted on the map of regression
estimates, but there is no rain shadow on the leeward
slopes of the terrain nor any indication of more intense
precipitation on the windward side (recall that the pre-
vailing wind direction is from the west).

Second, we use the predictor that is best correlated
with observed precipitation; that is, we use the inter-

action of specific humidity with elevation as the single
precipitation predictor leading to Y, = [1 y,]. The re-
sulting regression equation is

ZE(u) = 1.7493 + 7.8493y,(w), (18)

where the subscript 4 implies that only the interaction
of specific humidity with elevation y,(u) is used as pre-
cipitation predictor. For this regression model, R? =
0.48, a 300% increase from the model in Eq. (17), and
rmse = 2.22 mm, a 23% decrease from Eq. (17).

The map of precipitation estimates z3(u) derived via
Eq. (18) is shown in Fig. 6b. The regression-based field
depicts higher precipitation values where elevation is
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higher and moisture is more available. The most pro-
nounced difference between the patterns in Fig. 6a and
Fig. 6b is found in the southeastern part of the study
region, where the model in Eq. (18) yields low precip-
itation values. Although elevation is high in this area,
specific humidity is low, resulting in less precipitation.

Last, we use three predictors that are determined as
most significant using backward elimination. Backward
elimination is a variable selection procedure whereby
one starts with the entire set of predictors and subse-
quently drops the least significant variable (according
to an F test) from this initial set. Variables are repeatedly
eliminated from the initial set until no remaining vari-
able can be dropped (again according to the F test). For
details regarding backward elimination, and variable se-
lection in general, the reader is referred to Draper and
Smith (1998). In this way, we retained the vertical wind
component, the interaction of specific humidity with
elevation, and the interaction of specific humidity with
elevation and vertical wind as the three most important
predictors leading to Y, = [1 y, y, ¥,]. The resulting
regression equation is

25, (u) = 0.3862 + 4.8636y,(u) + 13.3508y,(u)

— 7.5561y,(u), (19)

where the subscript 347 implies that the predictors y,(u),
y, (1), and y,(u) were used in the regression model. For
this regression model, R? = 0.52, a 333% increase from
model (17), and rmse = 2.14 mm, a 26% reduction from
Eq. (17).

Recall from Table 2 that, although the vertical wind
component Y, is not correlated with the interaction be-
tween humidity and elevation Y,(p,,Y, = 0.03), the all-
interactions term Y, is significantly correlated with both
Y;and Y, (py,Y; = 0.61 and p,., Y, = 0.75, respectively).
The regression coefficients of Eq. (19) therefore should
be interpreted in the light of multicollinearity. In par-
ticular, the negative sign of the last regression coefficient
(b, = —7.55) is a consequence of multicollinearity. In
other words, the influence of the all-interactions pre-
dictor Y, is negative, once the effect of the other pre-
dictors Y, and Y, is removed. This effect could be also
quantified in terms of the corresponding coefficient of
partial determination. Note that principal components
regression (Draper and Smith 1998), that is, multiple
regression using orthogonal (uncorrelated) projections
of the original correlated variables, is an alternative pro-
cedure for variable selection and regression building
when multicollinearity is present. We did not pursue
this alternative, because it calls for equally subjective
decisions as backward elimination and because the in-
terpretation of the resulting regression coefficients (not
in terms of the orthogonal projections but in terms of
the original predictors) is as difficult as that of Eq. (19).

The map of precipitation estimates z%,,(u) derived via
Eq. (19) is shown in Fig. 6¢c. The large-scale precipi-
tation patterns of this regression-based field are similar
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to those of Fig. 6b, but the small-scale patterns differ
locally and are more closely associated with terrain var-
iations. In particular, there are obvious rain shadows on
the leeward slopes of the terrain (recall that the pre-
vailing wind direction is from the west).

The correlation coefficient between regression-based
and observed precipitation values for the regression
model in Eq. (19) is 0.72 (see Fig. 7a). Such correlation
values between regression-based and rain gauge data
are comparable with those obtained from predictions
using deterministic regional models with limited inclu-
sion of atmospheric physics and dynamics; for this latter
case, such correlation values range between 0.61 and
0.84 (Alpert and Shafir 1989a; Sinclair 1994). The spa-
tial organization of the resulting residual values
{ryn(u,) = [z(u,) — zf, (u)], @ =1,...,n} is shown
in Fig. 7b. The normal probability plot of these ry,,
values (Fig. 7c¢) indicates a quasi-Gaussian distribution.
Note that among all precipitation residuals resulting
from Egs. (17)—(19), the r,, values exhibit the smallest
spatial correlation (see next section), and their histogram
is the closest to a Gaussian distribution.

The three different maps of Fig. 6 represent three
different first-guess fields, that is, three different inter-
pretations of the relative importance of the seven pre-
dictor variables available over the study area. We now
proceed by incorporating these three different maps, as
well as the information brought by the precipitation re-
siduals at the rain gauge stations (and their spatial cor-
relation), into the geostatistical mapping of rainfall.

b. Geostatistical mapping of rainfall

All geostatistical interpolation procedures presented
in the previous section call for a covariance (or, equiv-
alent, a variogram) function that models the spatial con-
tinuity (or, equivalent, the spatial variability) of the orig-
inal sample precipitation z data or that of the residual
r values resulting from the particular trend function
adopted. Figure 8 depicts the omnidirectional experi-
mental and model variograms of the sample precipita-
tion data (Fig. 8a), as well as those corresponding to
the residuals from different trend functions (Figs. 8b—
d).

Two nested variogram structures (with no nugget ef-
fect), corresponding to one small-scale and one large-
scale spatial process, were used to model the sample
variograms of the ith dataset, be it the original rain gauge
z data or any set of residual r values:

31hl
yi(lhl) = CH(0) — cf exp[——,—}
a®
3thl
— c¥ exp|—|, (20)
af)

where |h| denotes the modulus of a distance vector h,
and C®(0) denotes the variance of the ith dataset. Pa-
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FiG. 8. Spatial variability characteristics of observed and residual datasets at the 77 rain gauges. Sample (thick dash—dotted black lines)
and model (thick gray lines) variograms for (a) observed precipitation; (b) residuals from regression estimates using elevation Y, as the only
predictor (REGR-2); (c) residuals from regression estimates using the interaction of specific humidity and elevation Y, as the only predictor
(REGR-4); and (d) residuals from regression estimates using vertical wind Y, the interaction of specific humidity with elevation Y,, and
the interaction of specific humidity with elevation and vertical wind Y, as the vector of predictors (REGR-347).

rameters ¢ and a{” denote the respective sill (contri-
bution to the total variance of the ith dataset) and range
of the small-scale variogram structure; c§’ and a$’ denote
the respective sill and range of the large-scale variogram
structure.

The parameters of the variogram models for the orig-
inal precipitation z data and the residual r values from
various trend functions were derived via cross-valida-
tion [see Isaaks and Srivastava (1989) and next section]
and are tabulated in Table 3. Because a zero nugget
effect was adopted for all cases, the sum of the sills of
the two variogram structures should be approximately
equal to the variance of the respective dataset. In the
case of original rain gauge z samples, precipitation spa-
tial variability is decomposed in a small-scale (40 km)
process that explains 22% of the total variance (=9.18
mm?), and a large-scale (160 km) process that explains

the remaining 78% of the total variance. Similar de-
compositions, although with different parameters, were
adopted for the residual » datasets. In general, as the
trend function becomes more complex, thus involving
more predictor variables and explaining a larger pro-
portion of the z sample variability, the variance of the
corresponding residual r values [sum of ¢{? and c{’]
becomes smaller and the corresponding nested vario-
gram structures exhibit smaller ranges [a{” and a{']; see
Table 3.

The map of precipitation estimates z%,(u) derived via
OK using Eqgs. 7 and 8 is shown in Fig. 9. Note the smooth
pattern of spatial variability exhibited by the OK precip-
itation estimates and the reproduction of large-scale fea-
tures found in the rain gauge map of Fig. 1a. A rain shadow
on the leeward slopes of the terrain is hardly discernible
in this case. The map of precipitation estimates zg, (1)
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F1G. 9. Kriging-derived precipitation estimates (mm) based on (a) only station data and ordinary kriging (OK); (b) regression using elevation
Y, as the single precipitation predictor, followed by simple kriging of residuals (SKLM-2); (c) regression using the interaction between
specific humidity and elevation Y, as the single precipitation predictor, followed by simple kriging of residuals (SKLM-4); and (d) regression
using the vertical wind component Y5, the interaction between specific humidity and elevation Y, and the interaction among specific humidity,

elevation, and the vertical wind component Y, as three precipitation predictors, followed by simple kriging of residuals (SKLM-347).

derived via simple kriging with locally varying mean using
Egs. 12 and 13, with the regression-based trend component
z¥(u) as local mean, is shown in Fig. 9b. The pattern of
spatial variability in the resulting estimates of Fig. 9b is
now less smooth than that of the OK estimates of Fig. 9a.
Note that the underlying trend component of Fig. 6b can
be distinguished in the map of Fig. 9b. The map of pre-
cipitation estimates z¥,,,(w) derived via SKLM, with the

regression-based trend component z}(u) as local mean, is
shown in Fig. 9c. Note the more complex spatial pattern
imposed by the corresponding trend component of Fig.
6¢. Last, the map of precipitation estimates zg, ,,,,(u) de-
rived via SKLM, with the regression-based trend com-
ponent z¥,(uw) as local mean, is shown in Fig.-9d. The
spatial distribution of the resulting estimates of-Fig. 9c
exhibits the most complex spatial patterns; especially at
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Fic. 10. Kriging-derived precipitation estimates (mm) based on (a) local deformation of the regression-based trend component z,(u), with
elevation being used as the single precipitation predictor, followed by simple kriging of residuals (KED-2); (b) local deformation of the
regression-based trend component z3(u), with the interaction between specific humidity and elevation being used as the single precipitation
predictor, followed simple kriging of residuals (KED-4); and (c) local deformation of the regression-based trend component z3,,(u), with the
vertical wind Y;, the interaction between specific humidity and elevation Y,, and the interaction among specific humidity, elevation, and
vertical wind Y, being used as precipitation predictors, followed simple kriging of residuals (KED-347).

small scales. Note the strong rain shadow on the leeward
slopes of the terrain, in accordance with the corresponding
trend component of Fig. 6d.

The maps of precipitation estimates z},(w) derived by
local deformation of the regression-based trend component
zF(a) via KED using Egs. 16 and 15 are shown in Fig.
10. The trend components zf(u) were those depicted in

Fig. 6D and used for deriving the SKL.M estimates of Fig.
9. The residual covariance model adopted was identified
to that of the ' residuals; that is, C, () = Cp(h). The
pattern of spatial variability is as complex as that found
in the SKI.M estimates of Fig. 9, in accordance with the
corresponding trend components of Fig. 6, yet local dif-
ferences between the corresponding SKLM and KED
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maps can be distinguished (compare, for example, the
north-central parts of Figs. 9d and 10c); it is likely that
KED leads to somewhat less variable precipitation esti-
mates in areas away from the rain gauges.

The task now is to compare objectively these alter-
native rainfall maps and to evaluate the improvement
(if any) brought by the predictors to the accuracy of the
derived map product.

¢. Comparison of alternative mapping procedures

Because all variants of kriging are exact interpolators,
no estimation error occurs at rain gauge locations. The
different geostatistical interpolation procedures are
therefore compared via cross-validation [see, for ex-
ample, Isaaks and Srivastava (1989)]. Cross-validation
amounts to sequentially dropping a single precipitation
value from the sample dataset and reestimating its value
from the remaining samples using all other available
information. At any sample location u,, both the orig-
inal precipitation value z(u,) and its cross-validation-
derived estimate z*(u,) are available. Comparison of
the various approaches therefore can be performed by
examining the statistics and spatial patterns of the 77
cross-validation error values {eX(u,) = [z%(u,) —
z(u,)], @« = 1, ..., n} computed at the 77 rain gauge
locations. A positive cross-validation error eX(u,) in-
dicates overestimation of the actual precipitation z(u,)
by the cross-validation estimate z(u,), whereas a neg-
ative cross-validation error indicates the reverse.

Table 4 gives selected cross-validation statistics for
the interpolation algorithms considered in the previous
section. Cross-validation statistics examined are the
rmse, as well as the correlation p,x, between the cross-
validation estimates and the true (sample) values and
the correlation pyx, between the cross-validation errors
and the true (sample) values. For the rmse, the best case
corresponds to near-zero values. For p,:,, the best case
is a value of 1, indicating an almost perfect correlation
between cross-validation estimates and true values. For
prtz the best case is a value of O indicating a lack of
correlation between cross-validation errors and true
data; this implies that there is no systematic underes-
timation or overestimation of high or low precipitation
values. In Table 4, values in parentheses denote the
relative difference in the corresponding cross-validation
scores from the case of OK using only rain gauge data.

Ordinary Kriging is the least accurate, because it leads
to the largest rmse and p,, values and to the smallest
pz:z value, of all the algorithms considered (see Table
4). The best performance is achieved by SKLM,,, and
KED.,,, because they lead to the lowest rmse and
priz values and to relatively high p,x, values. Note also
that SKLM,,, yields cross-validation errors with the
smallest spatial correlation. In other words, out of all
algorithms considered, SKLLM,,, yields cross-validation
residuals with the smallest variogram range (not shown).
For OK, the high negative correlation value pgx, =
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—0.54 implies that negative (or positive) OK cross-val-
idation errors are systematically associated with high
(or low) precipitation values, which is a direct conse-
quence of the smooth trend component mf,(u). Low
precipitation values tend to be systematically overesti-
mated (leading to positive cross-validation errors),
whereas high precipitation values tend to be systemat-
ically underestimated (leading to negative cross-vali-
dation errors). Such a smoothing effect is much less
severe for SKLM,,, (pgx, = —0.37, a 31% reduction
from OK) and for SKLM, (pzz, = —0.44, a 15% re-
duction from OK).

From Table 4, one can conclude that, overall, rainfall
mapping via SKLM and KED, accounting for the max-
imum amount of relevant predictors and for spatial cor-
relation of the resulting residuals, yields relatively better
cross-validation scores for the particular dataset and
study region. Although OK performs worst in terms of
cross-validation scores, its performance is not dramat-
ically different than the other algorithms considered in
this work. Such relatively good cross-validation scores
for the case of OK are largely due to the rain-gauge
density and the large spatial correlation range (160 km)
of precipitation.

To arrive at a more definite conclusion regarding the
improvement brought by the lower-atmosphere state
variables and terrain information, we compare their re-
lationship with the various cross-validation error data-
sets that result from the different algorithms adopted.
In particular, we investigate whether the entire set of
available predictors (Table 2) could account for a portion
of the spatial variability of the cross-validation errors.
If, for example, a statistically significant regression
function can be established between the predictors and
the cross-validation errors, this would imply that such
errors could be potentially reduced, had those predictors
been included in the interpolation procedure. Relations
between predictors and cross-validation errors were in-
vestigated for all the algorithms presented in the pre-
vious section.

The regression characteristics between cross-valida-
tion errors corresponding to different mapping algo-
rithms and three precipitation predictors Y, Y,, and ¥,
are shown in Table 5. A relatively high R? indicates that
a higher proportion of the spatial variability of cross-
validation errors can be accounted for by the three pre-
dictors. A relatively high F statistic associated with a
small significance p value implies that the regression
model between the corresponding cross-validation er-
rors and the precipitation predictors is statistically sig-
nificant.

From Table 5, one can see that statistically significant
regression models between cross-validation errors and
the three precipitation predictors Y5, Y,, and Y, can be
established for the case of OK, SKLM,, and, to a lesser
extent, for the case of SKLM,. For the case of OK, the
percentage of variance of cross-validation errors ac-
counted for by the regression on the predictors is 24%,
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TABLE 5. Regression characteristics between cross-validation errors of different mapping algorithms (subscripts denote the predictors used
in the respective regression equations), and the three precipitation predictors: vertical wind component Y5, interaction of specific humidity
with elevation ¥, and interaction among humidity, elevation, and vertical wind ¥;. Here, R? denotes the proportion of cross-validation errors
that is explained by regression using the three predictors Y, Y, and Y. A relatively high F statistic associated with a p value smaller than
0.001 implies that the regression model between the corresponding cross-validation errors and the precipitation predictors is statistically

significant.

Statistics OK SKLM, KED, SKLM, KED, SKLM,,, KED,,,
R 0.24 0.20 0.19 0.19 0.18 0.04 0.01

F score 7.60 6.17 5.74 5.67 5.49 1.05 0.30

p value 0.0002 0.0009 0.0014 0.0015 0.0019 0.3767 0.8250

whereas such a proportion drops to 19% in the case of
SKLM,. Note that KED and SKL.M give similar results
in all cases. One could argue that the R? values of Table
5 for the case of OK, SKLM,, and SKLM, (or, equiv-
alent, for the corresponding KED algorithms) are not
very high. They are, however, important in that the three
predictors Y, Y,, and Y, can explain a nonnegligible
proportion of the spatial variability of the cross-vali-
dation errors. Such results corroborate the importance
of including lower-atmosphere state variables and their
interaction with local terrain characteristics into the spa-
tial interpolation of rainfall.

Last, we evaluate the performance of the various al-
gorithms in terms of jackknife scores. To be more spe-
cific, we exclude sample precipitation values at the 15
stations marked with crosses in Fig. la and perform
estimation at these 15 locations. We preferentially ex-
clude the highest precipitation values for the jackknife,
because accurate estimation of such values is critical in
many hydrologic analyses. Most of the jackknife lo-
cations in the northwestern part of the study region are
located outside the convex hull of the remaining rain
gauges. This means that estimation at these jackknife
locations is performed in extrapolation mode, in which
case the local trend model m,, (u) adopted is of para-
mount importance. The algorithm that will suffer most
from this extrapolation setting is OK, because its local
trend model is estimated from nearby data that are lo-
cated (south)east from the jackknife stations (see Fig.
l1a). This adverse setting for OK, however, is compen-
sated by the fact that these highest sample precipitation
values are not predicted as well as the other ones from
the corresponding regression model (local trend; see
Fig. 7a). It also should be noted that, for all the algo-
rithms considered, we build the corresponding regres-
sion models and infer the resulting residual variograms
using all » = 77 rain gauges. The resulting rmse of
jackknife errors is shown in Table 6. Ordinary kriging
yields the largest rmse value (4.57), whereas SKLM -,
and SKLM, yield the smallest rmse values (3.42 and

3.69, respectively), thus achieving a 25% and 19% re-
duction from the OK-based rmse. Again, the importance
of including lower-atmosphere state variables and their
interaction with local terrain characteristics into the spa-
tial interpolation of rainfall is corroborated.

5. Discussion and conclusions

A geostatistical framework for enhanced analyses of
precipitation is presented in this paper. Atmospheric and
terrain characteristics, which control the spatial distri-
bution of precipitation at regional scales, are accounted
for via alternative forms of kriging. Lower-atmosphere
state variables include specific humidity and horizontal
wind components, readily available at coarse resolution
(2.5° X 2.5°) from the NCEP-NCAR reanalysis prod-
ucts. Their interactions with terrain, both elevation and
its local gradients, provide valuable information for
mapping the spatial distribution of orographic precipi-
tation. The relevance of this information is first eval-
uated via a regression model based on collocated pre-
cipitation and predictor data. The regression-based pre-
cipitation estimates constitute a first-guess field. Spatial
interpolation of the residuals from this first-guess field
is then performed, and the resulting residual field is
added to the regression-based estimates. As an alter-
native, the first-guess field is locally modified to con-
form to nearby sample precipitation data, followed by
spatial interpolation of the resulting residuals.

The alternative geostatistical procedures, which differ
in the complexity of the first-guess field, are used for
mapping time-averaged precipitation from a set of 77
rain gauges over a region of northern California for NDJ
of 1981/82. For this particular study area and time pe-
riod, elevation alone explains 12% of the precipitation
spatial variability, whereas the interaction of specific
humidity with elevation explains 48% of such vari-
ability. Linear regression using the vertical wind com-
ponent, the interaction of specific humidity with ele-
vation, and the interaction of specific humidity with

TABLE 6. Root-mean-square error (mm) of jackknife errors for different mapping algorithms (subscripts denote the predictors used in the
respective regression equations). The numbers in parentheses show the relative changes in the corresponding jackknife statistics from OK.

Statistics OK SKLM, KED,

SKLM,

KED, SKLM,,, KED,,,

Rmse 4.57 4.29 4.30

3.69 (—19%)

4.28 3.42 (—25%) 4.17
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elevation and vertical wind (the latter being a measure
of orographic uplift of air masses modulated by a sur-
rogate of temperature) as precipitation predictors ex-
plains 52% of the variance of observed precipitation.
Different first-guess fields are constructed via linear re-
gression using a different number of precipitation pre-
dictors. The resulting residuals are correlated in space,
with ranges varying from 150 km (for the least complex
first-guess field) to 90 km (for the most complex first-
guess field); the correlation range for the sample rain
gauge precipitation is 160 km. The various interpolation
algorithms are compared in terms of (a) their respective
cross-validation error statistics, (b) the significance of
regression models between such cross-validation errors
and precipitation predictors, and (c) their jackknife er-
rors. In all cases, interpolation using only rain gauge
data (OK) performed worst, while interpolation using
the maximum amount of relevant atmospheric and ter-
rain information (SKLM,,,) resulted in better cross-val-
idation and jackknife scores. The reduction in rmse val-
ues from OK obtained via SKLM,,, ranged from 9%
for cross-validation to 25% for jackknife.

Classical objective analysis schemes ignore important
relevant information such as humidity and vertical wind
and consequently produce oversmooth representations
of the spatial distribution of rainfall; such an adverse
effect is intensified when the network of rain gauges is
sparse. This paper demonstrates the capability of con-
structing realistic analyses of precipitation by integrat-
ing readily available and physically relevant predictors.
Precipitation analyses derived from the proposed
schemes can be used as reference for comparison against
spatial patterns of precipitation obtained via detailed
atmospheric models operating at regional scales.

In conclusion, it should be noted that rainfall mapping
within the proposed geostatistical framework could be
enhanced by the availability of wind fields at less coarse
resolution than those available from the NCEP reanal-
ysis products. Such finer-resolution wind fields could
be obtained, for example, from regional-scale atmo-
spheric models with detailed parameterization of phys-
ical and dynamical processes and could allow resolution
of the local divergence of air masses in complex terrain.
This better-resolved vertical wind component could be
better correlated with observed rain gauge precipitation.
Similar remarks can be made for other relevant vari-
ables, such as temperature and humidity, whose avail-
ability at regional scales could be critical for improving
the final map product.
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